On Finite Element Error Estimates for Optimal Control Problems with Elliptic PDEs
نویسنده
چکیده
Discretizations of optimal control problems for elliptic equations by finite element methods are considered. The problems are subject to constraints on the control and may also contain pointwise state constraints. Some techniques are surveyed to estimate the distance between the exact optimal control and the associated optimal control of the discretized problem. As a particular example, an error estimate for a nonlinear optimal control problem with finitely many control values and state constraints in finitely many points of the spatial domain is derived.
منابع مشابه
Finite Element Method for Constrained Optimal Control Problems Governed by Nonlinear Elliptic Pdes
In this paper, we study the finite element method for constrained optimal control problems governed by nonlinear elliptic PDEs. Instead of the standard error estimates under L2or H1norm, we apply the goal-oriented error estimates in order to avoid the difficulties which are generated by the nonsmoothness of the problem. We derive the a priori error estimates of the goal function, and the error ...
متن کاملA Posteriori Error Estimates for Semilinear Boundary Control Problems
In this paper we study the finite element approximation for boundary control problems governed by semilinear elliptic equations. Optimal control problems are very important model in science and engineering numerical simulation. They have various physical backgrounds in many practical applications. Finite element approximation of optimal control problems plays a very important role in the numeri...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملResidual-based a posteriori error estimates for hp finite element solutions of semilinear Neumann boundary optimal control problems
In this paper, we investigate residual-based a posteriori error estimates for the hp finite element approximation of semilinear Neumann boundary elliptic optimal control problems. By using the hp finite element approximation for both the state and the co-state and the hp discontinuous Galerkin finite element approximation for the control, we derive a posteriori error bounds in L2-H1 norms for t...
متن کاملTHE h × p FINITE ELEMENT METHOD FOR OPTIMAL CONTROL PROBLEMS CONSTRAINED BY STOCHASTIC ELLIPTIC PDES
This paper analyzes the h × p version of the finite element method for optimal control problems constrained by elliptic partial differential equations with random inputs. The main result is that the h × p error bound for the control problems subject to stochastic partial differential equations leads to an exponential rate of convergence with respect to p as for the corresponding direct problems...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009